Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

Self-drilling ¹æ½ÄÀÇ ¸¶ÀÌÅ©·ÎÀÓÇöõÆ® ½Ä¸³¿¡ ÀÇÇØ ¹ß»ýÇÏ´Â ÇÇÁú°ñ ½ºÆ®·¹ÀÎÀÇ À¯ÇÑ¿ä¼ÒÇؼ®

Finite element analysis of cortical bone strain induced by self-drilling placement of orthodontic microimplant

Korean Journal of Orthodontics 2009³â 39±Ç 4È£ p.203 ~ 212
¹ÚÁø¼­, À¯¿øÀç, °æÈñ¹®, ±Ç¿À¿ø,
¼Ò¼Ó »ó¼¼Á¤º¸
¹ÚÁø¼­ ( Park Jin-Seo ) - °æºÏ´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø ±³Á¤Çб³½Ç
À¯¿øÀç ( Yu Won-Jae ) - °æºÏ´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø ±³Á¤Çб³½Ç
°æÈñ¹® ( Kyung Hee-Moon ) - °æºÏ´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø ±³Á¤Çб³½Ç
±Ç¿À¿ø ( Kwon Oh-Won ) - °æºÏ´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø ±³Á¤Çб³½Ç

Abstract

°ñ¹Ðµµ°¡ ³ô°í µÎ²¨¿î ÇÇÁú°ñ¿¡ ¸¶ÀÌÅ©·ÎÀÓÇöõÆ®¸¦ self-drilling ¹æ½ÄÀ¸·Î ½Ä¸³ÇÏ´Â °æ¿ì °úµµÇÑ ¼öÁØÀÇ °ñºÎÇÏ(bone loading)°¡ ¹ß»ýÇÒ À§ÇèÀÌ ÀÖÀ¸¸ç ÀÌ´Â ÀÎÁ¢°ñÀÇ Á¤»óÀûÀÎ °ñ°³Çü(bone remodeling)¿¡ Àå¾Ö¸¦ ÃÊ·¡ÇÒ ¼ö ÀÖ´Ù. ÀÌ¿¡, º» ¿¬±¸¿¡¼­´Â À¯ÇÑ¿ä¼ÒÇؼ®À¸·Î µÎ²² 1.0 mmÀÇ ÇÇÁú°ñ¿¡ Absoanchor SH1312-7 ¸¶ÀÌÅ©·ÎÀÓÇöõÆ®((ÁÖ)µ§Å佺, ´ë±¸, ´ëÇѹα¹)°¡ self-drilling ¹æ½ÄÀ¸·Î ½Ä¸³µÇ´Â °úÁ¤(10ȸÀü, ½Ä¸³±íÀÌ 5 mm)À» ¸ð»ç(simulation)ÇÏ¿´À¸¸ç ½Ä¸³ ´Ü°èº°·Î ÇÇÁú°ñ¿¡ ¹ß»ýµÇ´Â ½ºÆ®·¹ÀÎÀ» Á¶»çÇÏ¿´´Ù. ½Ä¸³Áß ¸¶ÀÌÅ©·ÎÀÓÇöõÆ® ÷ºÎÀÇ Àý»è¿¬(cutting flute)¿¡ ÀÇÇÑ °ñ»èÁ¦·Î »ý±â´Â ³ª»ç±æ(threaded groove)ÀÇ Ä¡¼ö¸¦ ¾ò±â À§ÇÏ¿© °¡Åä °æ°ñ¿¡ ¸¶ÀÌÅ©·ÎÀÓÇöõÆ®¸¦ ½Ä¸³/Á¦°ÅÇÑ ÈÄ Micro CT (Explore Locus RS, GE Healthcare, Ontario, Canada)¸¦ ÀÌ¿ëÇÏ¿© ±âÇÏÇü»óÀ» ÃøÁ¤ÇÏ¿´À¸¸ç À̸¦ Ä¡¹Ð°ñÀÇ À¯ÇÑ¿ä¼Ò¸ðµ¨¿¡ ¹Ý¿µÇÏ¿´´Ù. Çؼ®°á°ú, Ä¡¹Ð°ñ¿¡ ¹ß»ýµÇ´Â ½ºÆ®·¹ÀÎÀº ÀÓÇöõÆ® ½Ä¸³±íÀÌ¿¡ µû¶ó Áõ°¡ÇÏ¿´°í, Ãʱâ´Ü°è¿¡¼­ ³ª»ç»ê¿¡ ÀÎÁ¢ÇÑ °ñ¿¡ ±¹ÇѵǴø °úºÎÇÏ ºÎÀ§(½ºÆ®·¹ÀÎÀÌ 4,000?-strainÀ» »óȸÇÏ´Â ¿µ¿ª)°¡ ½Ä¸³±íÀÌ Áõ°¡¿¡ µû¶ó ÀÎÁ¢°ñ Àüü, Áï ³ª»ç»ê ÀÎÁ¢ºÎ´Â ¹°·Ð °ñ(valley) ºÎÀ§¿¡ Á¢ÇÏ´Â ¸ðµç ¿µ¿ªÀ¸·Î È®ÀåµÇ¾ú´Ù. º» ¿¬±¸¸¦ ÅëÇØ, self-drilling ¹æ½ÄÀ¸·Î ¸¶ÀÌÅ©·ÎÀÓÇöõÆ®¸¦ ½Ä¸³ÇÒ ¶§ Ä¡¹Ð°ñ¿¡ ¹ß»ýÇÏ´Â ½ºÆ®·¹ÀÎ Å©±â´Â »ý¸®ÀûÀÎ °ñ°³ÇüÀ» ÀúÇØÇÒ ¼ö ÀÖ´Â ¼öÁØÀÓÀ» È®ÀÎÇÒ ¼ö ÀÖ¾ú´Ù.

Objective: The aim of this study was to evaluate the strain induced in the cortical bone surrounding an orthodontic microimplant during insertion in a self-drilling manner.

Methods: A 3D finite element method was used to simulate the insertion of a microimplant (AbsoAnchor SH1312-7, Dentos Co., Daegu, Korea) into 1 mm thick cortical bone. The shape and dimension of thread groove in the center of the cortical bone produced by the cutting flute at the apical of the microimplant was obtained from animal test using rabbit tibias. A total of 3,600 analysis steps was used to calculate the 10 turns and 5 mm advancement of the microimplant. A series of remesh in the cortical bone was allowed to accommodate the change in the geometry accompanied by the implant insertion.

Results: Bone strains of well higher than 4,000 microstrain, the reported upper limit for normal bone remodeling, were observed in the peri-implant bone along the whole length of the microimplant. Level of strains in the vicinity of either the screw tip or the valley part were similar.

Conclusions: Bone strains from a microimplant insertion in a self-drilling manner might have a negative impact on the physiological remodeling of cortical bone.

Å°¿öµå

±³Á¤¿ë ¸¶ÀÌÅ©·ÎÀÓÇöõÆ®;Self-drilling ½Ä¸³;½Ä¸³ ½ºÆ®·¹ÀÎ;3D À¯ÇÑ¿ä¼Ò¹ý
Microimplant;Self drilling placement;Strain during insertion;3D finite element method

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

  

µîÀçÀú³Î Á¤º¸

SCI(E)
KCI
KoreaMed